TRITERPENE GLYCOSIDES OF Hedera taurica.

IV. STRUCTURE OF HEDEROSIDES A_1 , A_2 , D_1 , AND D_2 FROM THE BERRIES OF CRIMEAN IVY

UDC 547.918:543.422

A. A. Loloiko, V. I. Grishkovets, A. S. Shashkov, and V. Ya. Chirva

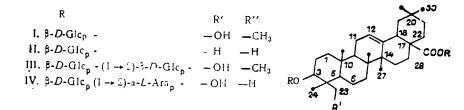
New triterpene glycosides have been isolated from the berries of Crimean ivy <u>Hedera taurica</u> Carr. (family Araliaceae) - hederoside A₁ (methyl ester of 3-0- β -D-glucopyranosylhederagenin) and hederoside D₁ 3-0-[0- β -D-glucopyranosyl]-(1 \rightarrow 2)- β -D-glucopyranosyl]hederagenin and also the known glycosides 3-0- β -D-glucopyranosyloleanolic acid and 3-0-[0- β -D-glucopyranosyl-(1 \rightarrow 2)- α -L-arabinopyranosyl]hederagenin. The structures of these compounds were established on the basis of the results of chemical methods and ¹H and ¹³C NMR spectroscopy.

In the present paper we describe the establishment of the structures of minor glycosides A_1 , A_2 , D_1 , and D_2 from <u>Hedera</u> taurica berries.

We have described the isolation of hederosides A_1 and A_2 previously [1]. Analysis of the products of the acid hydrolysis of hederoside A_1 (I) showed the presence of glucose in the carbohydrate moiety and hederagenin methyl ester as the aglycon. The ¹³C NMR spectrum of glycoside A_1 agreed completely with that of the methyl ester 3-O- β -D-glucopyranosylhederagenin obtained previously from hederoside B by treating it with diazomethane [1]. The R_f values of hederoside A_1 acetate and of the acetylated methyl ester of hederoside B also coincided. It is obvious that hederoside A_1 is the previously unisolated natural methyl ester of 3-O- β -D-glucopyranosylhederagenin.

According to the results of acid hydrolysis and PMR spectroscopy, hederoside A_2 (II) contained residues of glucose and oleanolic acid in a ratio of 1:1. The value of the SSCC $J_{1,2}$ corresponded to the β -configuration of the glycosidic bond. The physical constants of this glycoside agreed with those of oleanolic acid 3-O- β -D-glucopyranoside isolated from various plants [2-6].

Acetylation and TLC analysis of the acetate of glycoside D [1] showed that it consisted of two components – D_1 and D_2 . By the preparative separation of the acetates on silica gel followed by deacetylation we obtained the glycosides, which have been called hederosides D_1 (III) and D_2 (IV).


The acid hydrolysis of hederoside D_1 showed the presence in it of residues of glucose and of hederagenin methyl ester. The ¹³C NMR spectra of hederoside D_1 and of the methyl ether of hederoside F [1] were practically identical. The chromatographic mobilities of the acetates of hederoside D_1 and of the methyl ester of hederoside F coincided completely. Thus, hederoside D_1 is the previously unisolated natural methyl ester of 3-0-[0- β -D-glucopyranosyl-(1+2)- β -D-glucopyranosyl]hederagenin.

On the acid hydrolysis of hederoside D_2 , glucose, arabinose, and hederagenin were identified. The chemical shifts of the signals of the C atoms of the aglycon in the ¹³C NMR spectrum of glycoside D_2 (Table 1) coincided with those given in the literature [7]. It follows from the chemical shifts of the C atoms of the hederagenin residue that the carbohydrate chain was attached at the C-3 atom of the aglycon. The chemical shifts of the C atoms of the carbohydrate moiety (see Table 1) coincided with those for the disaccharide fragment O- β -Dglucopyranosyl-(1+2)- α -L-arabinopyranosyl [8]. Consequently, hederoside D_2 is 3-O-[O- β -Dglucopyranosyl-(1+2)- α -L-arabinosyl]hederagenin. A glycoside of identical structure has been isolated previously from a number of plants [8-11],

M. V. Frunze Simferopol' State University. Translated from Khimiya Prirodnykh Soedinenii, No. 2, pp. 228-230, March-April, 1990. Original article submitted May 3, 1989.

C atom	Chemical shift			C atom	Chemical shift				Chemical shift		
C	I	ш	IV		1	111	l IV	C atom	1	ш	IV
1 2 3 4 5 6 7 8 9	38.8 25.9 82.3 43.5 47.7 18,3 32.9 39,8 48,1	38,7 25,9 83,0 43,5 48,1 18,3 32,9 33,8 48,3	38,8 26.0 82,2 43.5 48,0 18,2 33,0 39.7 48,1	16 17 18 19 20 21 22 23 24	23,9 46.1 41,9 47,0 30,9 34.1 33 2 64,8 13 8	23,8 46,1 41,9 47,0 30,8 34,0 32,9 (5,4 13,5	23.7 46.4 42,0 46,7 31.0 34,2 33.2 65,0 13,7	0-CH, 1' 2' 3' 4' 5' 6'	51.7 105.8 75.8 78.7 71.7 78.3 62,9	51,5 103,7 84,1 77,9 74,4 78,0 62,8	104,0 81.3 73.7 68,3 64,9
10 11 12 13 14 15	37.0 23,5 122,9 144,3 42,1 28,2	37,0 23,5 122,9 144,2 42,0 28,2	37,0 23,7 123,0 144,2 42,2 28,4	25 26 27 28 29 30	16,2 17,3 26,3 178,1 33,2 23,8	16.1 17.3 26.2 173.1 33.1 -3,7	16.0 17.5 26.2 176.5 33,2 23.7	1" 2" 3" 4" 5" 6"		105.9 76 7 78,5 71,4 78,2 62,6	106, 0 76,3 78,3 71,4 78,2 62,5

TABLE 1. Chemical Shifts of the Signals of the ^{13}C Atoms of Hederosides A_1 (I), D_1 (III), and D_2 (IV) (δ , ppm, 0 - TMS; $C_5D_5N)$

EXPERIMENTAL

NMR spectra were recorded on a Bruker WM-250 instrument using solutions in pyridine-d₅ at 40°C with TMS as internal standard. Specific rotations were measured on a SU-4 polarimeter at $\lambda = 589$ nm. The conditions for acid hydrolysis [12] and for deacetylation [1] have been described previously. TLC analysis was conducted on Silufol plates in the solvent systems benzene-acetone (4:1) for the aglycons and the glycoside acetates and butanol-pyridine-25% ammonia (7:3:2) or chloroform-methanol-25% ammonia (7:3:2) for the sugars. To detect the aglycons and glycosides we used 10% perchloric acid, and for the sugars aniline phthalate.

Hederoside A_1 (I), $[\alpha]_D^{20} + 40^\circ$ (c 5.0; pyridine) was obtained by the deacetylation of the acetate of A_1 [1]. Glucose and hederagenin methyl ester were identified in an acid hydrolyzate by the TLC method.

Hederoside A_2 (II), $[\alpha]_D^{20} + 52^\circ$ (c 3.2; methanol), 245-250° (ethanol) was obtained by the deacetylation of the acetate of A_2 [1]. After the acid hydrolysis of (II), glucose and oleanolic acid were identified by TLC analysis. PMR spectrum of (II) (250 MHz, C_5D_5N , δ , ppm: 0 - TMS): 4.94 (d, $J_{1,2} = 8.0$ Hz, H-1'); 4.09 (t, $J_{2,3} = 8.5$ Hz, H-2'); 4.14-4.29 (m, H-3', H-4'); 3.69 (m, H-5'); 4.59 (dd, $J_{5,6A} = 2.5$ Hz, $J_{6A,6B} = 12.0$ Hz, H-6'A); 4.41 (dd, $J_{5,6B} = 5.5$ Hz, H-6'B); 3.38 (dd, $J_{3,2a} = 12.0$ Hz, $J_{3,2e} = 4.5$ Hz, H-3); 5.47 (br.t, $J_{11,12} =$ 3.8 Hz, H-12); 0.7-1.4 (m, CH₃, CH₂, and CH groups of the aglycon).

Hederoside D [1] was acetylated with acetic anhydride in pyridine (1:1, 20°C, 12 h). TLC analysis showed the presence of two components — the acetates of D₁ with R_f 0.5 and of D₂ with R_f 0.6. Preparative separation of the acetates of D₁ and D₂ was performed on silica gel L 40/100 μ with elution of the benzene—acetone (9:1) solvent system. Deacetylation gave hederoside D₁ (III), $[\alpha]_D^{2^0} + 32^\circ$ (c 4.0; pyridine) and D₂ (IV), $[\alpha]_D^{2^0} + 40^\circ$ (c 2.6; pyridine). By TLC analysis residues of glucose and hederagenin methyl ester were identified in (III) and residues of glucose, arabinose, and hederagenin in (IV).

LITERATURE CITED

- A. A. Loloiko, V. I. Grishkovets, A. S. Shashkov, and V. Ya. Chirva, Khim. Prir. Doedin., 721 (1988).
- 2. V. Ya. Chirva, P. K. Kintya, and V. N. Mel'nikov, Khim. Prir. Doedin., 297 (1971).

- 3. T. A. Badalbaeva, E. S. Kondratenko, and N. K. Abubakirov, Khim. Prior. Soedin., 635 (1973).
- 4. T. Tomimori and H. Kizu, J. Pharm. Soc. Jpn., <u>99</u>, 92 (1979).
- 5. L. G. Kretsu and G. V. Lazur'evskii, Khim. Prir. Soedin., 272 (1970).
- 6. L. P. Vecherko, É. P. Zinkevich, N. I. Libizov, and A. I. Ban'kovskii, The Search for New Biologically Active Substances [in Russian], Moscow (1970), p. 169.
- 7. H. Kizu and T. Tomimori, Chem. Pharm. Bull., <u>30</u>, 3340 (1982).
- 8. B. Domon and K. Hostettman, Helv. Chim. Acta, <u>66</u>, No. 2, 422 (1983).
- 9. Z. S. Kemoklidze, G. E. Dekanosidze, O. D. Dzhikiya, M. M. Vugal'ter, and É. P. Kemertelidze, Khim. Prir. Soedin., 788 (1982).
- 10. R. Higuchi and T. Kawasaki, Chem. Pharm. Bull, 24, 1021 (1976).
- 11. L. I. Strigina, T. M. Remennikova, A. P. Shchedrin, and G. B. Elyakov, Khim. Prir. Soedin., 303 (1972).
- A. A. Loloiko, V. I. Grishkovets, A. S. Shashkov, and V. Ya. Chirva, Khim. Prir. Soedin., 379 (1988).

TRITERPENE GLYCOSIDES OF Hedera taurica.

V. STRUCTURE OF HEDEROSIDES C AND E1 FROM CRIMEAN IVY BERRIES

V. I. Grishkovets, A. A. Loloiko, A. S. Shashkov, and V. Ya. Chirva UDC 547.918:543.422

A description is given of the isolation from the berries of Crimean ivy <u>Hedera</u> <u>taurica</u> Carr. (family Araliaceae) and the determination of their structures on the basis of chemical transformations and spectral characteristics of two triterpene glycosides — the known 3-O-[O- α -L-rhamnopyranosyl-(1 \rightarrow 2)- α -L-arabinopyranosyl]hederagenin and the new hederoside E₁ which is 3-O-[O- β -D-glucopyranosyl-(1 \rightarrow 2)- β -D-glucopyranosyl]erythrodiol.

Continuing a study of the saponins from the berries of Crimean ivy <u>Hedera taurica</u> Carr. (family Araliaceae) we have established the structures of hederosides C and E_1 .

The isolation of hederosides C and E_1 has been described previously [1]. The acid hydrolysis of hederoside C showed the presence in its molecule of residues of hederagenin, arabinose, and rhamnose. Tauroside E, isolated from ivy leaves, has a similar chemical composition [2]. The physical constants and chromatographic mobilities of hederoside C and tauroside E coincided completely. The structure of hederoside C was confirmed by NMR spectros-copy. The ¹³C NMR spectra of hederoside C and tauroside E were practically identical. Consequently, hederoside C is $3-0-[0-\alpha-L-rhamnopyranosyl-(1+2)-\alpha-L-arabinopyranosyl]hederagenin.$

In the products of the acid hydrolysis of hederoside E_1 , obtained by the deacetylation of the acetate of E_1 [1], glucose was identified, and an aglycon not agreeing in chromatiographic mobility with hederagenin or oleanolic acid – the predominating aglycons of the triterpene glycosides of Crimean ivy – was detected.

The IR spectrum of hederoside E_1 contained the absorption bands ν_{OH} , ν_{CH} , $\nu_{C=C}$, δ_{CH_3} , and $\nu_{C=O}$, but lacked absorption band $\nu_{C=O}$ that is characteristic for aglycons with a carboxy group.

In an analysis of the PMR spectrum of the acetate of hederoside E_1 , doublet signals with δ 4.71 and 4.46 ppm belonging to anomeric protons showed the presence of two sugar residues. In the light of the results of the acid hydrolysis, hederoside E_1 undoubtedly contains two glucose residues. It follows from the values $J_{1,2} = 7.7$ and 8.0 Hz that both monosaccharide residues have the β -configuration of the anomeric center. By using the method of selective

M. V. Frunze Simferopol' State University. Translated from Khimiya Prirodnykh Soedinenii, No. 2, pp. 230-234, March-April, 1990. Original article submitted June 3, 1989.